Skip to main content

Glass-coated sulfur particles could improve battery life by 1,000 percent

Lithium-ion batteries have taken us a long way in phones, tablets, and even cars over the years, but it’s not a perfect technology — battery capacity holds us back. Scientists have been on the lookout for an alternative, but nothing has quite panned out yet. There’s been considerable interest around lithium-sulfur batteries in the last few years, and a breakthrough experiment from the Bourns College of Engineering at the University of California, Riverside could make these batteries the next big thing. All it takes is a little glass.
Traditional lithium-ion batteries have found their way into virtually all types of mobile technology, because they have significant energy density and relatively long life. You can charge a li-ion cell a few hundred times before it starts to fail, and there’s no memory effects as with older nickel cadmium and nickel-metal hydride rechargeables. This is where lithium-sulfur still falls short, but not because of the memory effect. They just get dirty.
A fresh, new lithium-sulfur battery can have energy density ten times that of a conventional lithium-ion battery. Imagine a large Android phone with 30,000mAh of juice instead of just 3,000mAh. How fantastic would that be? With current lithium-sulfur technology, that starts dropping off rather quickly as lithium and sulfur reaction products start clogging the works. These products, called lithium polysulfides, dissolve in the electrolyte solution and become stuck at the electrodes. This causes an overall decrease in capacity, and there’s no way to reverse it.
The UC Riverside team found they could prevent this “polysulfide shuttling” by using nano-scale sulfur beads in the battery’s cathode and coating them with SiO2, which you might know as glass. The thickness of this silica sheath is measured in tens of nanometers. It can’t be too thick or it would interfere with the battery’s function. However, it also can’t be too thin, or the glass layer could rupture and allow the formation of lithium polysulfides that damage the structure.
Just coating the sulfur in glass offered substantial improvements in durability, but the coating was still prone to rupture. That breakage issue had to be addressed. Researchers found that incorporating graphene oxide (mrGO) into the cathode added stability and made the nanoparticles less likely to rupture. These cells managed 50 discharge cycles without a substantial decrease in capacity.
Researchers are still falling short of developing the kind of stability you’d need to commercialize a lithium-sulfur battery for consumer technology. Batteries in phones and tablets are increasingly non-removable, so they need to last at least a few years or several hundred cycles. This experiment gets us closer to a battery revolution, but you might want to keep your charging cable handy for now.
Source: Extremetech

Comments

Popular posts from this blog

AI in Soap Manufacturing Industry

Machine learning (ML) has numerous potential applications in the soap manufacturing industry, contributing to process optimization, quality control, resource management, and more. Here are some examples: 1. Quality Control : ML algorithms can be trained to analyze images of soap bars to detect defects such as cracks, air bubbles, or inconsistent coloring. By automating the inspection process, manufacturers can ensure that only high-quality products reach the market, reducing waste and enhancing customer satisfaction. 2. Predictive Maintenance : ML models can analyze sensor data from manufacturing equipment to predict when maintenance is needed. By detecting potential issues before they cause equipment failure, manufacturers can minimize downtime and reduce repair costs. 3. Supply Chain Optimization : ML algorithms can analyze historical data on raw material prices, demand forecasts, and production schedules to optimize inventory management and procurement decisions. This helps minimize...

Telescopic Contact Lens For Visually Impaired People

See far distance just by winking your eyes. A team of engineers have designed a telescopic contact lens that can switch between normal and magnefied vision.  The Researchers at  San Jose, California has built a prototype pf lens that could one day help people with visual impairment  to see. The lenses might be particularly useful with age-related macular degeneration, a debilitating condition in which people gradually lose their central vision. It is the leading cause of visual impairment and affect millions worldwide. The contact lens developed by Ford’s team is one millimeter thick. Researchers used aluminum mirrors, fit tightly together, to create a ring-shaped telescope embedded in the contact lens. The center of the lens allows for normal, non-magnified vision.  Its periphery, where the telescope is located, magnifies images 2.8 times. Switching between normal and magnefied vision Without the glasses, the contact lenses superimpose both normal and magn...

Top 3 Fastest Hydrogen Powered Car

When it comes to racing using hydrogen powered car, this top three car will win the show. Hydrogen powered car uses hydrogen gas as a fuel which combust with oxygen to form water. #3. Aston Martin Rapide :  British luxury marque ASTON MARTIN  introduced AM Rapide S in early 2010.  The Rapide is powered by a 5,935 cc V12 engine , producing 470 bhp and torque of 443 lbf·ft (601 N·m). It is Rear-wheel drive  and has a six- speed Touchtronic automatic. The Rapide can reach a top speed of 188.5 mph (303 km/h),  and accelerate 0-100 km/h (62 mph) in 5.3 seconds, or 0-60 mph (97 km/h) in 5.0 seconds. #2. BMW H2R : This car built by BMW uses liquid hydrogen as a fuel. The H2R’s 6.0-liter V-12 engine, which draws on BMW 's Valvetronic  and Double-Vanos  technology, is based on the 760i’s gasoline-fueled powerplant. This H2-powered high performer generates 232 horsepower (173 kW), helping it t...