Skip to main content

Way better than X ray..

Medical techniques for looking inside our bodies have come a long way, but in the future it looks like doctors may be able to see absolutely everything going on under our skin.

Researchers have invented a new kind of camera that can actually see through structures inside the human body, detecting light sources behind as much as 20 centimetres (7.9 inches) of bodily tissue.

The current prototype, developed by researchers from the University of Edinburgh in the UK, is designed to work in conjunction with endoscopes – long, slender instruments that are often equipped with cameras, sensors and lights to peer inside hollow cavities inside the human body.

Endoscopes are valuable tools for all sorts of medical procedures, but up until now it's been difficult to externally confirm exactly where in the body the instrument is looking, without resorting to things like X-ray scans.

Now that's no longer a problem, due to the new camera's capability to detect sources of light inside the body, such as the illuminated tip of the endoscope's long flexible tube.

Thanks to thousands of integrated photon detectors inside the camera, the device can detect individual particles of light being beamed through human tissue.

When photons come into contact with bodily structures, light usually scatters or bounces off the tissue, but the camera's sensitivity enables it to pick up any tiny traces of light that make it through.

By reconciling light signals that come directly to the camera with scattered photons – which travel longer distances and so take longer to reach it – the device is able to determine where the light-emitting endoscope is placed inside the body.

This technique, which differentiates between scattered and ballistic (direct) photons is called ballistic imaging, and it could help physicians to understand the exact location of the bodily interior they're looking at with the endoscope – which may be hugely valuable in terms of determining treatments.

In the image above, you can see an example of the light the camera detects from an optical endomicroscope in use in sheep lungs.

The image on the left is what the prototype sees, with the ballistic imaging revealing the precise location of the instrument in the lungs.

On the right, the shot reveals what the scene looks like to a conventional camera, with the sensor picking up lots of noise in terms of scattered light, but unable to determine where the photons are originating, as the light particles bounce around the lung structures.

"This is an enabling technology that allows us to see through the human body," says senior researcher Kev Dhaliwal.

"The ability to see a device's location is crucial for many applications in healthcare, as we move forwards with minimally invasive approaches to treating disease."

Dhaliwal is the chief investigator of a collaborative, multi-institutional project called Proteus, which is researching a range of new imaging technologies to help visualise previously unseen biological secrets, with a focus on lung and respiratory diseases.

In this case, the researchers say the improved vision provided by the camera will enable doctors to visualise both the tip and length of the endoscope they're using, and the resolution of the imagery is expected to be refined in the future.

There's no word yet on when we can expect to see this camera used in clinical treatments, but it's a promising development in imaging and diagnostic.

[A completely new type of camera can actually see through the human body - ScienceAlert] is good,have a look at it! http://www.sciencealert.com/scientists-have-developed-a-camera-that-can-see-through-the-human-body

Comments

Popular posts from this blog

AI in Soap Manufacturing Industry

Machine learning (ML) has numerous potential applications in the soap manufacturing industry, contributing to process optimization, quality control, resource management, and more. Here are some examples: 1. Quality Control : ML algorithms can be trained to analyze images of soap bars to detect defects such as cracks, air bubbles, or inconsistent coloring. By automating the inspection process, manufacturers can ensure that only high-quality products reach the market, reducing waste and enhancing customer satisfaction. 2. Predictive Maintenance : ML models can analyze sensor data from manufacturing equipment to predict when maintenance is needed. By detecting potential issues before they cause equipment failure, manufacturers can minimize downtime and reduce repair costs. 3. Supply Chain Optimization : ML algorithms can analyze historical data on raw material prices, demand forecasts, and production schedules to optimize inventory management and procurement decisions. This helps minimize...

Elon Musk says we could make Mars habitable with thermonuclear bomb

On Wednesday night, SpaceX and Tesla founder Elon Musk appeared on The Late Show with Stephen Colbert and announced that the speediest way to terraform Mars and allow humans to live outside of an airlock dome would be to nuke it. "The fast way is to drop thermonuclear weapons over the poles," Musk told Colbert, prompting the host to call him a super villain. But is the idea that crazy? The basis of the bomb plot is that the nukes would melt the frozen CO2 on the Red Planet's poles, releasing it as gas into the atmosphere. This would help to thicken up the Red Planet's thin atmosphere, which could be enough to heat the planet and allow water to exist in a liquid form. Essentially, the bombs would kick-start something similar to the global warming that's happening here on Earth, and hopefully trigger a cascade effect - so the more ice that melts, the more CO2 that's released, which warms the planet and melts more ice, and so on. However, there are some...

Telescopic Contact Lens For Visually Impaired People

See far distance just by winking your eyes. A team of engineers have designed a telescopic contact lens that can switch between normal and magnefied vision.  The Researchers at  San Jose, California has built a prototype pf lens that could one day help people with visual impairment  to see. The lenses might be particularly useful with age-related macular degeneration, a debilitating condition in which people gradually lose their central vision. It is the leading cause of visual impairment and affect millions worldwide. The contact lens developed by Ford’s team is one millimeter thick. Researchers used aluminum mirrors, fit tightly together, to create a ring-shaped telescope embedded in the contact lens. The center of the lens allows for normal, non-magnified vision.  Its periphery, where the telescope is located, magnifies images 2.8 times. Switching between normal and magnefied vision Without the glasses, the contact lenses superimpose both normal and magn...