Skip to main content

New theory lowers the speed limit for information processing in quantum computing

A new study has narrowed the theoretical speed limit for how quickly quantum computers of the future will be able to transmit and process information.
Quantum computing systems have the potential to perform certain calculations exponentially faster than classical computers. As such, they could offer enormous advantages for solving complex problems, like searching expansive databases, cracking modern encryption, and modelling atomic-scale systems for drug development.
The fundamental building blocks of these computers are quantum bits, or qubits. While several candidate particles exist, most - if not all - qubits are single atoms.
Information is stored on the magnetic spin of these atomic particles, which can point either "up" or "down" - states that are considered equivalent to the 0 and 1 of binary code.
Importantly, qubits can harness a strange quantum phenomenon called superposition, which allows the spin to exist in both states simultaneously. A scalable quantum computer would need thousands of these qubits working in concert across varying distances. These particles would rapidly transmit information to other qubits through another phenomenon known as entanglement.
The question is, just how fast can information move between particles, which are spread out over varying distances, via entanglement?
The team's result, which was recently publishedPhysical Review Letters, builds on two papers that have previously explored the theoretical speed limit of quantum computing.
 in the journal 
The first paper, published in 1972, discovered a finite speed limit for how quickly qubits could exchange information, if they were only able to do so with the qubit next-door, across relatively short distances. As Hsu points out for IEEE Spectrum, this limit is known as the Lieb-Robinson Bounds.
The second study, published in 2005, was interested in how quickly qubits could communicate with non-neighbouring qubits, across greater distances - an important consideration for quantum systems needing to link up different components. It suggested that interactions over longer ranges might actually result in a faster speed limit.
"Those results implied a quantum computer might be able to operate really fast, much faster than anyone had thought possible," said Foss-Feig in a press release"But over the next decade, no one saw any evidence that the information could actually travel that quickly."
Measuring the speed of quantum interactions is a bit like lining up dominos and timing how long the chain-reaction takes for the last one to fall down. Physicists exploring this aspect of the quantum world often line up several particles and watch how fast changing the spin of the first particle affects the one farthest down the line.
The NIST team analysed years of research to show that the speed limit predicted by the 2005 study was too great, and developed a new mathematical theory, which constrains how fast quantum information can travel via spin-state interactions.

Comments

Popular posts from this blog

Goodbye, Oppurtunity. Nasa mars rover 'Opportunity' no longer resposding.

Opportunity, the intrepid NASA rover that spent 15 years on Mars climbing in and out of craters to gather evidence of the planet's watery past, has been brought down by tiny particles of dust. After weeks of trying to revive the veteran Mars rover in the wake of a blinding dust storm, NASA has given up on ever hearing from it again. It's a humble ending for a machine that survived a 300-million-mile journey through space, executed a hole-in-one landing, and set a record by driving more than 28 extraterrestrial miles. Opportunity's last transmission to Earth occurred on June 10 amid an epic Martian dust storm. Still, NASA engineers remained hopeful that when the dust settled, the rover would recharge its solar-powered batteries and resume its superlative mission. Opportunity landed on Mars in January 2004 for a mission that was supposed to last 90 Martian days. Its twin rover, Spirit, had landed three weeks earlier on the other side of the planet. "Wit

Telescopic Contact Lens For Visually Impaired People

See far distance just by winking your eyes. A team of engineers have designed a telescopic contact lens that can switch between normal and magnefied vision.  The Researchers at  San Jose, California has built a prototype pf lens that could one day help people with visual impairment  to see. The lenses might be particularly useful with age-related macular degeneration, a debilitating condition in which people gradually lose their central vision. It is the leading cause of visual impairment and affect millions worldwide. The contact lens developed by Ford’s team is one millimeter thick. Researchers used aluminum mirrors, fit tightly together, to create a ring-shaped telescope embedded in the contact lens. The center of the lens allows for normal, non-magnified vision.  Its periphery, where the telescope is located, magnifies images 2.8 times. Switching between normal and magnefied vision Without the glasses, the contact lenses superimpose both normal and magnified images. With

A new future weightless Insulation material

A totally new insulation material has been developed that is totally weightless but can still withstand high temperature, that would not be tolerated by other materials and destroy it. The porous aerogel is at least 99 percent open space , with the rest made up of an atomically thin ceramic called hexagonal boron nitride. The design proves extremely durable under high temperatures and rapid temperature shifts of over 1,000 degrees Celsius.  “It’s notoriously hard to make materials that are not just lightweight, but can also be heavily heat resistant,” says Deep Jariwala, an engineer at the University of Pennsylvania.  The new ultralight insulator may be especially well suited to shielding components on spacecraft , which must endure extreme temperature swings when turning toward or away from the sun or re-entering Earth’s atmosphere, he says.  The aerogel comprises a network of tiny air pockets, with each pocket separated by two atomically thin layers of hexagonal b