Skip to main content

Future Manufacturing Through Nanoshaping


– A new method that creates large-area patterns of three-dimensional nanoshapes from metal sheets represents a potential manufacturing system to inexpensively mass produce innovations such as "plasmonic metamaterials" for advanced technologies.
The metamaterials have engineered surfaces that contain features, patterns or elements on the scale of nanometers that enable unprecedented control of light and could bring innovations such as high-speed electronics, advanced sensors and solar cells.
The new method, called laser shock imprinting, creates shapes out of the crystalline forms of metals, potentially giving them ideal mechanical and optical properties using a bench-top system capable of mass producing the shapes inexpensively.
The shapes researchers created include nanopyramids, gears, bars, grooves and a fishnet pattern, and are too small to be seen without specialized imaging instruments and are thousands of times thinner than the width of a human hair. The researchers used their technique to stamp nanoshapes out of titanium, aluminum, copper, gold and silver.
A key benefit of the shock-induced forming is sharply defined corners and vertical features, or high-fidelity structures.
"These nanoshapes also have extremely smooth surfaces, which is potentially very advantageous for commercial applications," Cheng said. "Traditionally it has been really difficult to deform a crystalline material into a nanomold much smaller than the grain size of starting materials, and due to the size effects the materials are super-strong when grain size has to be reduced to very small sizes. Therefore, it is very challenging to generate metal flow into nanomolds with high-fidelity 3-D shaping."
The researchers also created hybrid structures that combine metal with graphene, an ultrathin sheet of carbon promising for various technologies. Such a hybrid material could enhance the plasmonic effect and bring "metamaterial perfect absorbers," or MPAs, which have potential applications in optoelectronics and wireless communications.

"We can generate nanopatterns on metal-graphene hybrid materials, which opens new ways to pattern 2-D crystals," Cheng said.
The technique works by using a pulsed laser to generate "high strain rate" imprinting of metals into the nanomold.
"We start with a metal thin film, and we can deform it into 3-D nanoshapes patterned over large areas," Cheng said. "What is more interesting is that the resulting 3-D nanostructures are still crystalline after the imprinting process, which provides good electromagnetic and optical properties."
Whereas other researchers have created nanoshapes out of relatively soft or amorphous materials, the new research shows how to create nanoshapes out of hard and crystalline metals.
The silicon nanomolds were fabricated at the Birck Nanotechnology Center in Purdue's Discovery Park by a research group led by Minghao Qi, an associate professor of electrical and computer engineering.
"It is counter-intuitive to use silicon for molds because it is a pretty brittle material compared to metals," Qi said. "However, after we deposit an ultrathin layer of aluminum oxide on the nanomolds, it performs extremely well for this purpose. The nanomolds could be reused many times without obvious damage. Part of the reason is that although the strain rate is very high, the shock pressure applied is only about 1-2 gigapascals."
The shapes were shown to have an "aspect ratio" as high as 5, meaning the height is five times greater than the width, an important feature for the performance of plasmonic metamaterials.


Comments

Popular posts from this blog

A new future weightless Insulation material

A totally new insulation material has been developed that is totally weightless but can still withstand high temperature, that would not be tolerated by other materials and destroy it. The porous aerogel is at least 99 percent open space , with the rest made up of an atomically thin ceramic called hexagonal boron nitride. The design proves extremely durable under high temperatures and rapid temperature shifts of over 1,000 degrees Celsius.  “It’s notoriously hard to make materials that are not just lightweight, but can also be heavily heat resistant,” says Deep Jariwala, an engineer at the University of Pennsylvania.  The new ultralight insulator may be especially well suited to shielding components on spacecraft , which must endure extreme temperature swings when turning toward or away from the sun or re-entering Earth’s atmosphere, he says.  The aerogel comprises a network of tiny air pockets, with each pocket separated by two atomically thin layers ...

Scientists have created glasses-free 3D holograms using graphene

Three-dimensional holographic images are a mainstay in many sci-fi films. But in real life, we’ve struggled to achieve the same effect without the use of annoying 3D glasses. Now scientists from Swinburne University of Technology in Melbourne, Australia have used a graphene-based material to create a full-colour, pop-up, 3D floating display - visible from a wide angle with the naked eye. The effect was created using a graphene oxide, and could be applied to the touch-screen surface of smartphones or watches, the authors Min Gu and Xiangping Li explain over at The Conversation. Holograms work by bending light off the screen in a carefully controlled way so that, instead of bouncing directly back into your eye, it makes it appear as though it's projected off a separate display. The Swinburne researchers were able to create the floating 3D display by tweaking the refractive index - the measure of how much light bends as it passes through a medium - of graphene...

Top 3 Fastest Hydrogen Powered Car

When it comes to racing using hydrogen powered car, this top three car will win the show. Hydrogen powered car uses hydrogen gas as a fuel which combust with oxygen to form water. #3. Aston Martin Rapide :  British luxury marque ASTON MARTIN  introduced AM Rapide S in early 2010.  The Rapide is powered by a 5,935 cc V12 engine , producing 470 bhp and torque of 443 lbf·ft (601 N·m). It is Rear-wheel drive  and has a six- speed Touchtronic automatic. The Rapide can reach a top speed of 188.5 mph (303 km/h),  and accelerate 0-100 km/h (62 mph) in 5.3 seconds, or 0-60 mph (97 km/h) in 5.0 seconds. #2. BMW H2R : This car built by BMW uses liquid hydrogen as a fuel. The H2R’s 6.0-liter V-12 engine, which draws on BMW 's Valvetronic  and Double-Vanos  technology, is based on the 760i’s gasoline-fueled powerplant. This H2-powered high performer generates 232 horsepower (173 kW), helping it t...