Skip to main content

Needle Free Way To Find Glucose Levels Using Temporary Tattoo

At the University of California, San Diego; Nanoengineers have tested a temporary tattoo that both extracts and measures the level of glucose in the fluid in between skin cells. This first-ever example of the flexible, easy-to-wear device could be a promising step forward in noninvasive glucose testing for patients with diabetes.The sensor was developed and tested by graduate student Amay Bandodkar and colleagues in Professor Joseph Wang’s laboratory at the NanoEngineering Department and the Center for Wearable Sensors at the Jacobs School of Engineering at UC San Diego. Bandodkar said this “proof-of-concept” tattoo could pave the way for the Center to explore other uses of the device, such as detecting other important metabolites in the body or delivering medicines through the skin.
The research team is also working on ways to make the tattoo last longer while keeping its overall cost down, he noted. “Presently the tattoo sensor can easily survive for a day. These are extremely inexpensive—a few cents—and hence can be replaced without much financial burden on the patient.”
People with diabetes often must test their glucose levels multiple times per day, using devices that use a tiny needle to extract a small blood sample from a fingertip. Patients who avoid this testing because they find it unpleasant or difficult to perform are at a higher risk for poor health, so researchers have been searching for less invasive ways to monitor glucose.
A similar device called GlucoWatch from Cygnus Inc. was marketed in 2002, but the device was discontinued because it caused skin irritation, the UC San Diego researchers note. Their proof-of-concept tattoo sensor avoids this irritation by using a lower electrical current to extract the glucose.

Comments

Popular posts from this blog

AI in Soap Manufacturing Industry

Machine learning (ML) has numerous potential applications in the soap manufacturing industry, contributing to process optimization, quality control, resource management, and more. Here are some examples: 1. Quality Control : ML algorithms can be trained to analyze images of soap bars to detect defects such as cracks, air bubbles, or inconsistent coloring. By automating the inspection process, manufacturers can ensure that only high-quality products reach the market, reducing waste and enhancing customer satisfaction. 2. Predictive Maintenance : ML models can analyze sensor data from manufacturing equipment to predict when maintenance is needed. By detecting potential issues before they cause equipment failure, manufacturers can minimize downtime and reduce repair costs. 3. Supply Chain Optimization : ML algorithms can analyze historical data on raw material prices, demand forecasts, and production schedules to optimize inventory management and procurement decisions. This helps minimize...

Startup builds AI to automate accounting

Smacc , which uses AI to automate accounting, has secured a 3.5 million Series A round from Cherry Ventures, Rocket Internet, Dieter von Holtzbrinck Ventures, Grazia Equity and business angels. Smacc offers small and medium-sized enterprises a platform to digitize and automate accounting and financial processes. The founding trio Uli Erxleben, Janosch Novak and Stefan Korsch came up with the idea after find accounting to be the most painful part of their own startup. Erxleben managed Rocket Internet’s US ventures in New York and San Francisco, and is also the founder of Berliner Berg , a craft beer startup. Customers submit their receipts to Smacc, which are turned into a machine-readable format, encrypted, then allocated to an account. The platform gradually also self-learns, tracking invoices, sales and costs, as well as their liquidity. The system checks against some 64 data points, verifies the invoice, checking, for example, that the math adds up, and even if the VAT...

Way better than X ray..

Medical techniques for looking inside our bodies have come a long way, but in the future it looks like doctors may be able to see absolutely everything going on under our skin. Researchers have invented a new kind of camera that can actually see through structures inside the human body, detecting light sources behind as much as 20 centimetres (7.9 inches) of bodily tissue. The current prototype, developed by researchers from the University of Edinburgh in the UK, is designed to work in conjunction with endoscopes – long, slender instruments that are often equipped with cameras, sensors and lights to peer inside hollow cavities inside the human body. Endoscopes are valuable tools for all sorts of medical procedures, but up until now it's been difficult to externally confirm exactly where in the body the instrument is looking, without resorting to things like X-ray scans. Now that's no longer a problem, due to the new camera's capability to detect sources of light inside ...